16.6.2023 L sequence - Algorithm

INPUT:

Two polynomials F and G defined as sums of their holynomials (= homogeneous polynomials):

$$
\begin{aligned}
& F=F_{m}+F_{m+1}+F_{m+2}+\cdots+F_{M} \\
& G=G_{n}+G_{n+1}+G_{n+2}+\cdots+G_{N}
\end{aligned}
$$

(F_{i}, G_{i} is homogeneous of degree i) While this is an algorithm for polynomials, all the individual steps are done on holynomials. Its very important to watch the degrees.
We treat F and G as lists of holynomials, i.e. $F[k]=F_{k}$.

ALGORITHM:

Algorithm is a while cycle.

```
Step(0)
i=1
while (not stopping condition) do
        Step(i)
        i++
end while
```

Each step adds a new element to the following lists:

- $L=\mathcal{L}$-sequence (list of the holynomials ${ }_{i} L$)
- $A=\mathcal{A}$-sequence (list of integers $a_{i}=\operatorname{deg}_{i} L$)
- $K A=$ list of lists of holynomials, of which the first coordinate of ker ψ_{i} can be constructed
- $K B=$ list of lists of holynomials, of which the second coordinate of ker ψ_{i} can be constructed
- $U=$ list of holynomials ${ }_{i} \Upsilon$
- $Z=$ list of holynomials $Z_{i}=\frac{i \Upsilon}{i^{L}}$
- $D=$ list of holynomials $D_{i}=\frac{{ }_{i} L}{i+1}{ }^{L}$

METHODS

- $A=\operatorname{gcd}(U, V)$ - greatest common divisor of two holynomials
- $A=U / V$ - quotient of two holynomials
- $A, B=\operatorname{OneSol}(U, V, W)$ - returns one solution (pair $A, B)$ of the homogeneous equation

$$
A_{p-i} U_{i}+B_{p-j} V_{j}=W_{p}
$$

where $\operatorname{gcd}\left(U_{i}, V_{j}\right)=1$ and $i+j<p$
Remark: both $K A$ and $K B$ will be lists of lists of structure:

$$
K A=[[\circ],[\circ, \circ],[\circ, \circ, \circ],[\circ, \circ, \circ, \circ], \cdots]
$$

where each circle represents one holynomial.

STEP 0:

```
\(L[0]=\operatorname{gcd}\left(F_{m}, G_{n}\right)\)
\(k a=G_{n} /{ }_{0} L\)
\(A[0]=\operatorname{deg}\left({ }_{0} L\right)\)
\(k b=F_{m} /{ }_{0} L\)
\(U[0]=0\)
\(K A[0]=[k a]\) (as list of one holynomial)
\(Z[0]=0\)
\(K B[0]=[k b]\) (as list of one holynomial)
```

```
\(U[k]=\sum_{i=0}^{k-1}(K B[k-1][i] \cdot G[n+i+1]-K A[k-1][i] \cdot F[m+i+1])\)
\(L[k]=\operatorname{gcd}(L[k-1], U[k])\)
\(A[k]=\operatorname{deg}(L[k])\)
\(Z[k]=U[k] / L[k]\)
\(D[k]=L[k-1] / L[k]\)
```

Now we need the list C of k holynomial coefficients.
$C[0]=D[k]$
$v=-Z[k]$
for $(i=0, \cdots, k-1)$ do:
$C[i+1], v=\operatorname{OneSol}(Z[k-i-1],-D[k-i-1], v)$

end for

$a, b=\operatorname{OneSol}(K B[0][0], K A[0][0], v)$
Now we can construct the new kernel (As a lists $k a$ and $k b$ of $k+1$ holynomials):
$k a[0]=a$
$k b[0]=b$
for ($i=1, \cdots, k$) do
$k a[i]=\sum_{j=0}^{k-i} C[j] \cdot K A[k-1-j][i-1]$
$k b[i]=\sum_{j=0}^{k-i} C[j] \cdot K B[k-1-j][i-1]$
end for
$K A[k]=k a$ (as list of $k+1$ holynomials)
$K B[k]=k b$ (as list of $k+1$ holynomials)

STOPPING CONDITIONS:

Algorithm stops if one of the conditions is true:

- We reach step $k+1$ where $A[k+1]=0$. Then we have found the whole sequences $L=\left[{ }_{0} L, \cdots{ }_{k} L\right]$ and $A=\left[a_{0}, \cdots, a_{k}\right]$.
- We reach the limit of Bezout theorem, which means that $\sum a_{i}>\operatorname{deg}(F) \cdot \operatorname{deg}(G)$. Then F and G have a common component passing through 0 and the intersection multiplicity is ∞.

OUTPUT:

Output consists of

- \mathcal{L}-sequence (list $\left.L=\left[{ }_{0} L,{ }_{1} L, \cdots{ }_{k} L\right]\right)$
- \mathcal{A}-sequence (list $\left.A=\left[a_{0}, a_{1}, \cdots, a_{k}\right]\right)$

Then the intersection multiplicity of F and G at $O=(0,0)$ equals

$$
\begin{equation*}
I_{O}(F, G)=m n+\sum a_{i} \tag{1}
\end{equation*}
$$

