30.6.2023 examples

Let $T=a x-b y$ be a tangent. We already have conditions for which $T \mid{ }_{0} L$ and $T \mid{ }_{1} L$. Now we would like to find out when does $T \mid{ }_{2} L$ and connect it to the geometry of the situation (probably the contribution of the tangent T to the intersection multiplicity)

example 1

Let $F_{m}=x y$ and $\mathcal{L}=\left({ }_{0} L,{ }_{1} L,{ }_{2} L,{ }_{3} L, \cdots\right)=(x y, x y, x y, x, \cdots)$. Then the polynomials F and G are of the form

$$
\begin{aligned}
& F=x y+F_{3}+F_{4}+F_{5}+\cdots \\
& G=x y Z_{n-2}+\left[x y Z_{n-1}+F_{3} Z_{n-2}\right]+\left[x y Z_{n}+F_{3} Z_{n-1}+F_{4} Z_{n-2}\right]+\left[x Z_{n+2}+F_{3} Z_{n}+F_{4} Z_{n-1}+F_{5} Z_{n-2}\right]+\cdots
\end{aligned}
$$

For any F_{i}, Z_{i}, such that $y \nmid Z_{n+2}$.

example 2

Let $F_{m}=x y$ and $\mathcal{L}=\left({ }_{0} L,{ }_{1} L,{ }_{2} L, \cdots\right)=\left(x y, x y,{ }_{2} L, \cdots\right) .\left(y \nmid{ }_{2} L\right)$ Then the polynomials F and G are of the form

$$
\begin{aligned}
& F=x y+F_{3}+F_{4}+\cdots \\
& G=x y Z_{n-2}+\left[x y Z_{n-1}+F_{3} Z_{n-2}\right]+\left[Z_{n+2}+F_{3} Z_{n-1}+F_{4} Z_{n-2}\right]+\cdots
\end{aligned}
$$

For any F_{i}, Z_{i}, such that $y \nmid Z_{n+2}$.
Alternatively, we can make this into a set of conditions.

- $\operatorname{gcd}\left(F_{2}, G_{n}\right)=x y \quad \Longrightarrow \quad{ }_{0} L=x y$
- $x y \left\lvert\,\left(G_{n+1}-\frac{1}{x y} G_{n} F_{3}\right) \quad \Longrightarrow \quad{ }_{1} L=x y\right.$
- $y \nmid\left(G_{n+2}-\frac{1}{x y} F_{3}\left(G_{n+1}-\frac{1}{x y} G_{n} F_{3}\right)-\frac{1}{x y} G_{n} F_{4}\right) \Longrightarrow y \nmid{ }_{2} L$

example 3

Let $F_{m}={ }_{0} L$, which means that $F={ }_{0} L+F_{m+1}+F_{m+2}+\cdots$. Let G be a general polynomial $G=G_{n}+G_{n+1}+\cdots$. Then

- ${ }_{0} L=\operatorname{gcd}\left(F_{m}, G_{n}\right)=F_{m}$
- ${ }_{1} \Upsilon=\Upsilon_{m+n-a_{0}+1}=G_{n+1}-\frac{G_{n}}{F_{m}} F_{m+1}=\frac{1}{F_{m}}\left(F_{m} G_{n+1}-G_{n} F_{m+1}\right)$. Therefore

$$
{ }_{1} L=\operatorname{gcd}\left({ }_{0} L,{ }_{1} \Upsilon\right)=\operatorname{gcd}\left(F_{m}, G_{n+1}-\frac{G_{n}}{F_{m}} F_{m+1}\right)=L_{a_{1}}
$$

- ${ }_{2} \Upsilon=\Upsilon_{m+n-a_{1}+2}=\frac{1}{F_{m}} \frac{1}{L_{a_{1}}}\left(F_{m} G_{n+1}-G_{n} F_{m+1}\right) F_{m+1}+\frac{L_{a_{0}}}{L_{a_{1}}} \frac{F_{m}}{L_{a_{0}}} G_{n+2}-\frac{L_{a_{0}}}{L_{a_{1}}} \frac{G_{n}}{L_{a_{0}}} F_{m+2}=$

$$
=\frac{1}{L_{a_{1}}}\left(\left(G_{n+1}-\frac{G_{n}}{F_{m}} F_{m+1}\right) F_{m+1}+F_{m} G_{n+2}-G_{n} F_{m+2}\right)=
$$

and

$$
=\frac{1}{L_{a_{1}}}\left(G_{n+1} F_{m+1}-\frac{G_{n}}{F_{m}} F_{m+1}^{2}+F_{m} G_{n+2}-G_{n} F_{m+2}\right),
$$

$$
{ }_{2} L=\operatorname{gcd}\left({ }_{1} L,{ }_{2} \Upsilon\right)=\operatorname{gcd}\left(L_{a_{1}}, \frac{1}{L_{a_{1}}}\left(\left(G_{n+1}-\frac{G_{n}}{F_{m}} F_{m+1}\right) F_{m+1}+F_{m} G_{n+2}-G_{n} F_{m+2}\right)\right)=L_{a_{2}}
$$

In case of $L_{a_{1}} \mid F_{m+1}$, we can simplify this to

- ${ }_{2} \Upsilon=\Upsilon_{m+n-a_{1}+2}=\frac{1}{L_{a_{1}}}\left(F_{m} G_{n+2}-G_{n} F_{m+2}\right)$, therefore

$$
{ }_{2} L=\operatorname{gcd}\left({ }_{1} L,{ }_{2} \Upsilon\right)=\operatorname{gcd}\left(L_{a_{1}}, \frac{1}{L_{a_{1}}}\left(F_{m} G_{n+2}-G_{n} F_{m+2}\right)\right)=L_{a_{2}}
$$

The polynomials F and G are in the form

$$
\begin{aligned}
F & =F_{m}+F_{m+1}+F_{m+2}+\cdots \\
G & =\left(G_{n}\right)+\left(G_{n+1}\right)+\left(G_{n+2}\right)+\cdots= \\
& =\left(F_{m} Z_{n-m}\right)+\left(Z_{n-m} F_{m+1}+L_{a_{1}} H_{n-a_{1}+1}\right)+ \\
& +\left(\frac{L_{a_{1}}}{F_{m}}\left(H_{n-a_{1}+1}\left(\beta_{m-a_{1}+1} L_{a_{1}}-F_{m+1}\right)-H_{m+n-a_{1}-a_{2}+2} L_{a_{2}}\right)-Z_{n-m} F_{m+2}\right)
\end{aligned}
$$

such that

- $L_{a_{1}}\left|F_{m} \wedge L_{a_{2}}\right| L_{a_{1}}$
- $\operatorname{gcd}\left(H_{n+1-a_{1}}, \frac{F_{m}}{L_{a_{1}}}\right)=1 \wedge \operatorname{gcd}\left(H_{m+n-a_{1}-a_{2}+2}, \frac{L_{a_{1}}}{L_{a_{2}}}\right)=1$
- $\left.\frac{F_{m}}{L_{a_{1}}} \right\rvert\,\left(H_{n-a_{1}+1}\left(\beta_{m-a_{1}+1} L_{a_{1}}-F_{m+1}\right)-H_{m+n-a_{1}-a_{2}+2} L_{a_{2}}\right)$

example 4

\mathcal{L} polynomials in general case: Let $F=F_{m}+F_{m+1}+\cdots$ and $G=G_{n}+G_{n+1}+\cdots$. Then

- ${ }_{0} L=\operatorname{gcd}\left(F_{m}, G_{n}\right)=L_{a_{0}}$
- ${ }_{1} \Upsilon=\Upsilon_{m+n-a_{0}+1}=\frac{F_{m}}{L_{a_{0}}} G_{n+1}-\frac{G_{n}}{L_{a_{0}}} F_{m+1}=\frac{1}{L_{a_{0}}}\left(F_{m} G_{n+1}-G_{n} F_{m+1}\right)$. Therefore

$$
{ }_{1} L=\operatorname{gcd}\left({ }_{0} L,{ }_{1} \Upsilon\right)=\operatorname{gcd}\left(L_{a_{0}}, \frac{1}{L_{a_{0}}}\left(F_{m} G_{n+1}-G_{n} F_{m+1}\right)\right)=L_{a_{1}}
$$

- ${ }_{2} \Upsilon=\Upsilon_{m+n-a_{1}+2}=\beta_{m-a_{1}+1} G_{n+1}-\alpha_{n-a_{1}+1} F_{m+1}+\frac{L_{a_{0}}}{L a_{1}} F_{m} L_{a_{0}} G_{n+2}-\frac{L_{a_{0}}}{L_{a_{1}}} \frac{G_{n}}{L_{0}} F_{m+2}=$

$$
=\beta_{m-a_{1}+1} G_{n+1}-\alpha_{n-a_{1}+1} F_{m+1}+\frac{F_{m}}{L_{a_{1}}} G_{n+2}-\frac{G_{n}}{L_{a_{1}}} F_{m+2},
$$

where the pair $\alpha_{n-a_{1}+1}$ and $\beta_{m-a_{1}+1}$ is a solution of the holynomial equation
$\alpha_{n-a_{1}+1} \frac{F_{m}}{L_{a_{0}}}-\beta_{m-a_{1}+1} \frac{G_{n}}{L_{a_{0}}}=\frac{1}{L_{a_{0}}} \frac{1}{L_{a_{1}}}\left(F_{m} G_{n+1}-G_{n} F_{m+1}\right)$

$$
{ }_{2} L=\operatorname{gcd}\left({ }_{1} L,{ }_{2} \Upsilon\right)=\operatorname{gcd}\left({ }_{1} L, \beta_{m-a_{1}+1} G_{n+1}-\alpha_{n-a_{1}+1} F_{m+1}+\frac{1}{L_{a_{1}}}\left(F_{m} G_{n+2}-G_{n} F_{m+2}\right)\right)=L_{a_{2}}
$$

