14.7.2023 special case of a special case

So far we know that if some tangent T is t times in ${ }_{0} L$ and does not occur in ${ }_{1} L$, then the contribution of the tangent T into the intersection multiplicity is t.
We would like to extend this to ${ }_{1} L$. Therefore we would like to prove that if some T is t_{0} times in ${ }_{0} L$ and t_{1} times in ${ }_{1} L$ and does not occur in ${ }_{2} L$, then the contribution of the tangent T into the intersection multiplicity is $t_{0}+t_{1}$.

special case

Let $F=F_{m}+F_{m+1}+\cdots$ and $G=G_{n}+G_{n+1}+\cdots$ be a pair of curves intersecting at the origin, such that

$$
\begin{aligned}
& y \mid F_{m}={ }_{0} L={ }_{1} L, \\
& y \nmid{ }_{2} L
\end{aligned}
$$

Let y be a tangent of both F and G of multiplicity s. Then F and G are of the form

$$
\begin{aligned}
F= & \left(y^{s} L_{v} L_{m-v-s}\right)+\left(F_{m+1}\right)+\left(F_{m+2}\right)+\cdots \\
G= & \left(y^{s} L_{v} L_{m-v-s} Z_{n-m}\right)+\left(Z_{n-m} F_{m+1}+Z_{n-m+1} y^{s} L_{v} L_{m-v-s}\right)+ \\
& \quad+\left(Z_{n-v+2} L_{v}+Z_{n-m+1} F_{m+1}-Z_{n-m} F_{m+2}\right)+\cdots
\end{aligned}
$$

for any numbers v, s (such that $v+s \leq m$) and polynomials $L_{v}, L_{m-v-s}, F_{m+1}, F_{m+2}, Z_{n-m}, Z_{n-m+1}, Z_{n-v+2}$ such that

- $y \nmid L_{v}$
- $y \nmid L_{m-v-s}$
- $y \nmid Z_{n-2-v}$
- $\operatorname{gcd}\left(Z_{n-2-v}, L_{m-v-s}\right)=1$.

Then $\mathcal{L}=\left(y^{s} L_{v} L_{m-v-s}, \quad y^{s} L_{v} L_{m-v-s}, \quad L_{v}, \cdots\right)$.

