14.7.2023 special case of a special case

So far we know that if some tangent T is t times in ${}_{0}L$ and does not occur in ${}_{1}L$, then the contribution of the tangent T into the intersection multiplicity is t.

We would like to extend this to $_1L$. Therefore we would like to prove that if some T is t_0 times in $_0L$ and t_1 times in $_1L$ and does not occur in $_2L$, then the contribution of the tangent T into the intersection multiplicity is $t_0 + t_1$.

special case

Let $F = F_m + F_{m+1} + \cdots$ and $G = G_n + G_{n+1} + \cdots$ be a pair of curves intersecting at the origin, such that

$$\begin{array}{l} y \mid F_m = {}_0L = {}_1L, \\ y \nmid {}_2L \end{array}$$

Let y be a tangent of both F and G of multiplicity s. Then F and G are of the form

$$F = (y^{s}L_{v}L_{m-v-s}) + (F_{m+1}) + (F_{m+2}) + \cdots$$

$$G = (y^{s}L_{v}L_{m-v-s}Z_{n-m}) + (Z_{n-m}F_{m+1} + Z_{n-m+1}y^{s}L_{v}L_{m-v-s}) + (Z_{n-v+2}L_{v} + Z_{n-m+1}F_{m+1} - Z_{n-m}F_{m+2}) + \cdots$$

for any numbers v, s (such that $v + s \leq m$) and polynomials $L_v, L_{m-v-s}, F_{m+1}, F_{m+2}, Z_{n-m}, Z_{n-m+1}, Z_{n-v+2}$ such that

- $y \nmid L_v$
- $y \nmid L_{m-v-s}$
- $y \nmid Z_{n-2-v}$
- $gcd(Z_{n-2-v}, L_{m-v-s}) = 1.$

Then $\mathcal{L} = (y^s L_v L_{m-v-s}, y^s L_v L_{m-v-s}, L_v, \cdots).$

Proof (by direct calculation) in PAP: 23_07_14_A