21.7.2023 Branch of a curve F with the tangent y of the multiplicity 1

Let y a tangent of the curve $F=F_{m}+F_{m+1}+\cdots$ of multiplicity 1 . Without loss of generality, let the coefficient of $x^{m-1} y$ be 1 . We denote $F_{m+j}=\sum f_{i}^{0} x^{m+j-i} y^{i}$, therefore

$$
\begin{aligned}
F= & F_{m}+F_{m+1}+F_{m+2}+\cdots= \\
= & 0+f_{1}^{0} x^{m-1} y+f_{2}^{0} x^{m-2} y^{2}+\cdots+f_{m}^{0} y^{m}+ \\
& +f_{0}^{1} x^{m+1}+f_{1}^{1} x^{m} y+\cdots+f_{m+1}^{1} y^{m+1}+ \\
& +f_{0}^{2} x^{m+2}+f_{1}^{2} x^{m+1} y+\cdots+f_{m+2}^{2} y^{m+2}+ \\
& +\cdots,
\end{aligned}
$$

Then there is only one branch of F with the tangent y and its parametrization is of the form

$$
\begin{equation*}
b(t)=\left(t,-f_{0}^{h} t^{h+1}-V(H) t^{h+H+1}\right)=\left(t, t^{h+1}\left(-f_{0}^{h}-V(H) t^{H}\right)\right)= \tag{1}
\end{equation*}
$$

where h is the smallest number such that f_{0}^{h} is nonzero. $V(H)=V(e, i)$ (for $\left.H=e h+i, e, i \geq 0, i<h\right)$ is defined as

$$
V(H)=V(e, i)=\sum_{j=0}^{e+1}\left(-f_{0}^{h}\right)^{e+1-j} f_{e+1-j}^{j h+i}
$$

(if $(j h+i)-m>e+1-j$ then $f_{e+1-j}^{j h+i}:=0$).
The number H is the smallest integer such that $V(H)$ is nonzero.
PROOF: by direct computation in 23_07_25_ A

