21.7.2023 Branch of a curve F with the tangent y of the multiplicity 1

Let y a tangent of the curve $F = F_m + F_{m+1} + \cdots$ of multiplicity 1. Without loss of generality, let the coefficient of $x^{m-1}y$ be 1. We denote $F_{m+j} = \sum f_i^0 x^{m+j-i} y^i$, therefore

$$F = F_m + F_{m+1} + F_{m+2} + \dots =$$

= 0 + f_1^0 x^{m-1} y + f_2^0 x^{m-2} y^2 + \dots + f_m^0 y^m +
+ f_0^1 x^{m+1} + f_1^1 x^m y + \dots + f_{m+1}^1 y^{m+1} +
+ f_0^2 x^{m+2} + f_1^2 x^{m+1} y + \dots + f_{m+2}^2 y^{m+2} +
+

Then there is only one branch of F with the tangent y and its parametrization is of the form

$$b(t) = \left(t, -f_0^h t^{h+1} - V(H)t^{h+H+1}\right) = \left(t, t^{h+1} \left(-f_0^h - V(H)t^H\right)\right) =$$
(1)

where h is the smallest number such that f_0^h is nonzero. V(H) = V(e, i) (for H = eh + i, $e, i \ge 0$, i < h) is defined as

$$V(H) = V(e,i) = \sum_{j=0}^{e+1} \left(-f_0^h\right)^{e+1-j} f_{e+1-j}^{jh+i}$$

(if (jh + i) - m > e + 1 - j then f_{e+1-j}^{jh+i} : = 0). The number H is the smallest integer such that V(H) is nonzero. PROOF: by direct computation in 23_07_25_ A